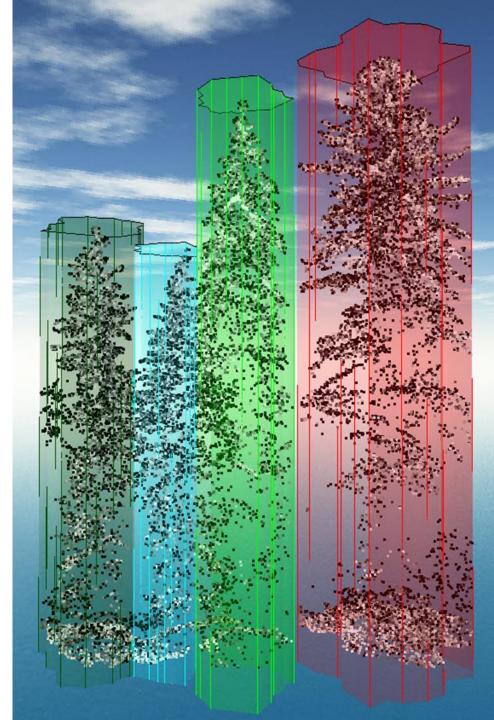


LiDAR Derived Individual Tree, Hexagon, and Polygonal Forest Inventories


Romeo Malette Forest

July 13, 2023

Outline

➢ Project Recap

- Individual Tree Inventory (ITI)
- Hex Inventory (EFI)
- > Polygon Inventory (eFRI)

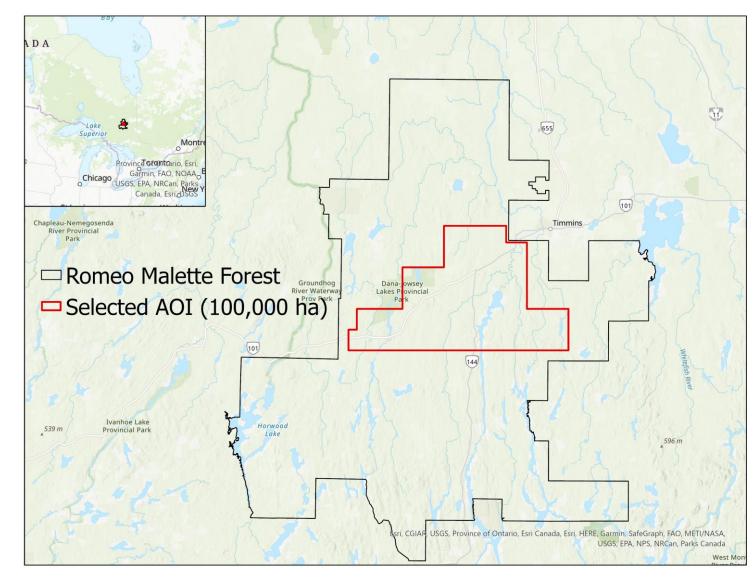
Project Overview

Hex (Hybrid)

Operational Forest Inventory

- Field Plot creation & processing

- Area-based Analysis integrated with and built upon the Individual Tree Inventory foundation

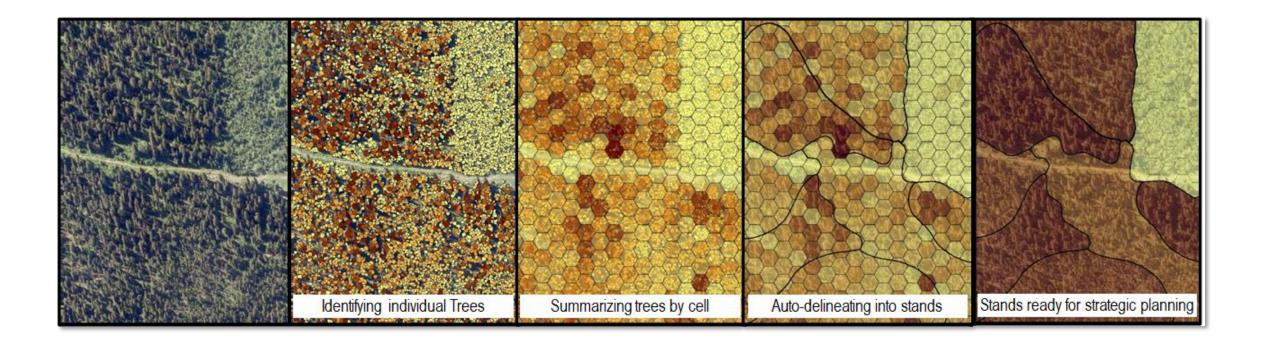

Individual Tree Inventory

- Stereo Imagery to capture Stems and sample Areas
 - Machine-learning Model Validation
- Segmentation of individual trees from the point cloud
- Analysis and Production of each segmented Tree in the AOI

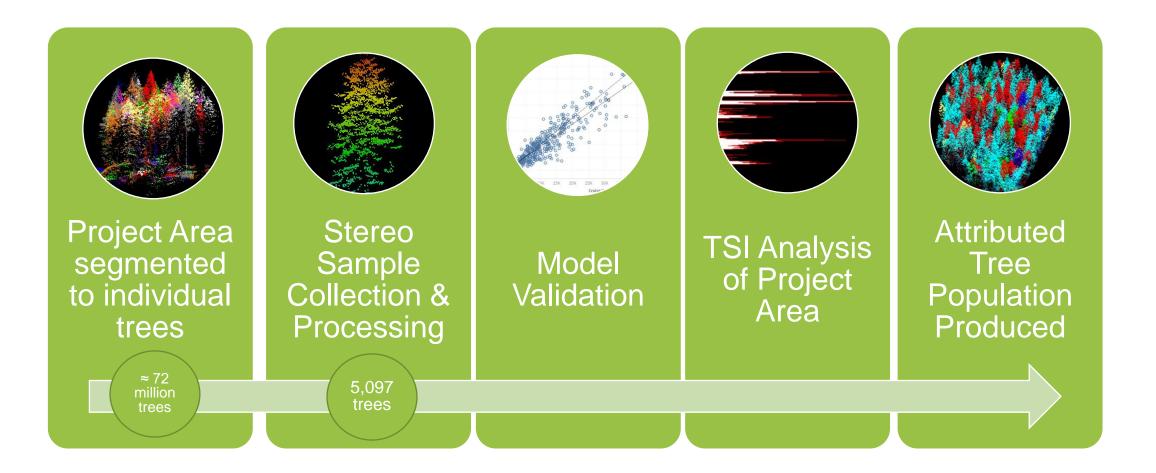
Romeo Malette Forest

Study Area

5

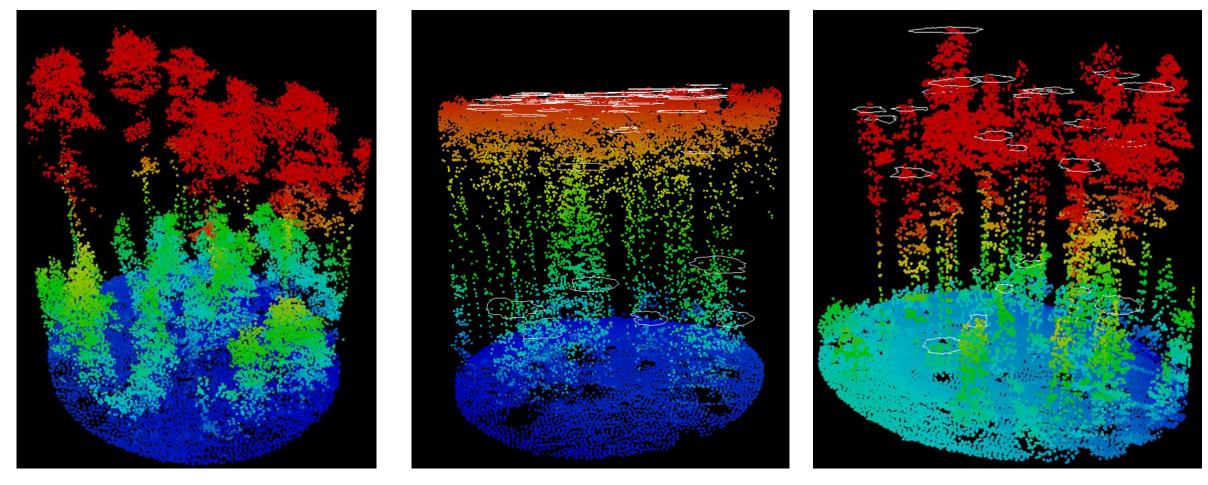

Operational to Strategic

Linked Inventories – Different Uses, Same Data

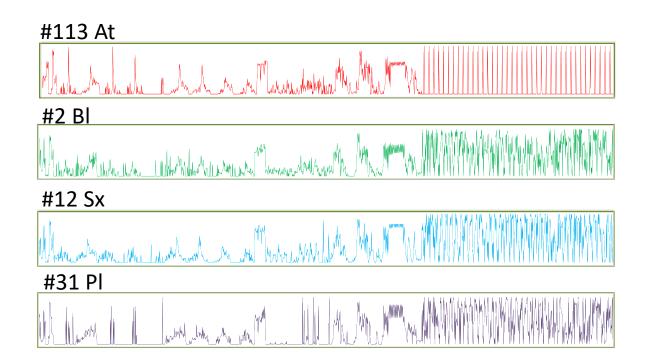

- Individual Tree Inventory
- 400m² hexagons

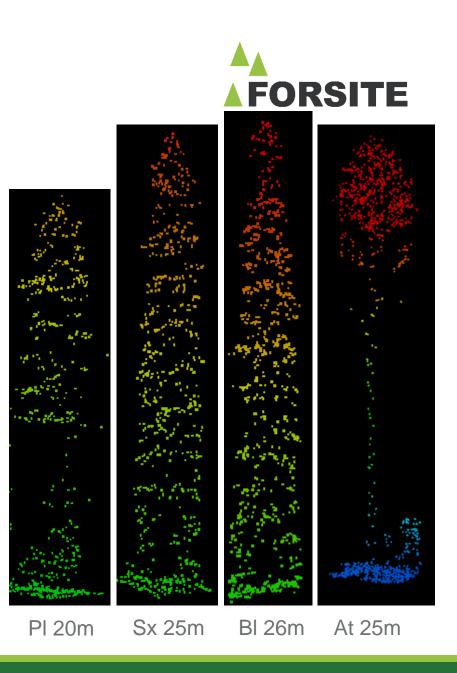
- Auto-Delineated Polygons
- Assign Attributes

Tree Species Identification Process



ITI - Example Segmentations

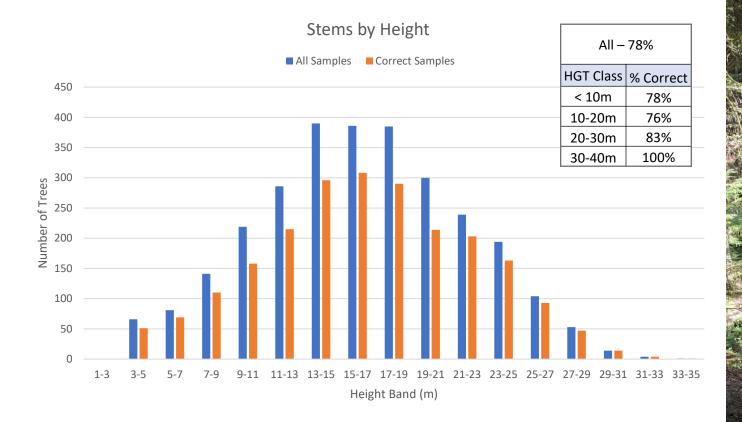



Finding Trees in Lidar Point Clouds

Assigning Species (Tree by Tree)

- Crown metrics taken from the point cloud crown shape, size, and density, and colour (intensity)
- Species assigned using machine learning algorithm and ground-truthed tree library

Assessing Accuracy: Stem Test

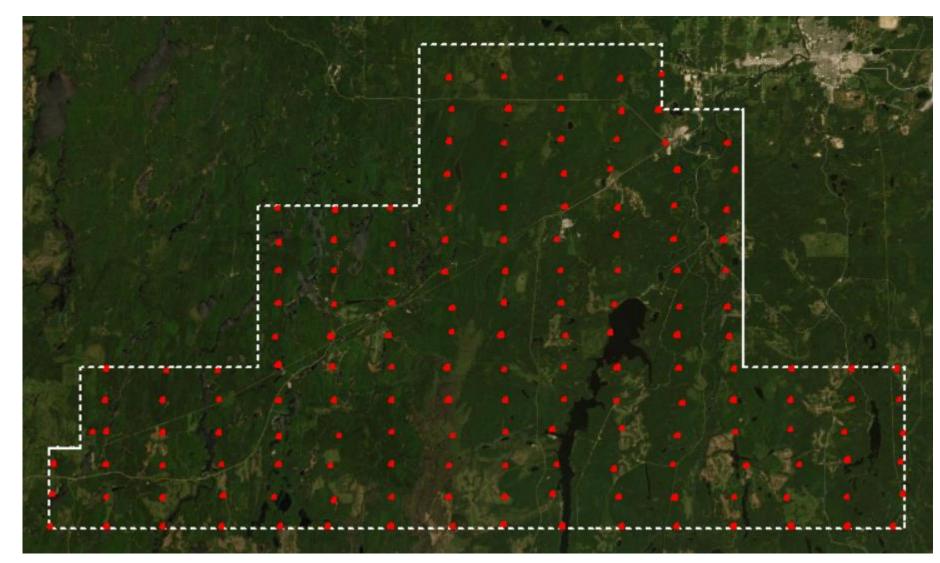


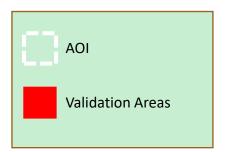
			TSI															
																		Hit rate (Correct/ Photo
			BF	CW	LA	PJ	PR	PW	SB	sw	AB	BW	MR	РВ	РТ	SN	Total	Interp)
		BF	184	5	0	4	0	0	26	1	0	2	0	0	0	0	222	83%
		CW	2	162	2	1	0	0	4	2	1	11	0	0	0	0	185	88%
		LA	9	1	170	7	0	0	34	2	0	1	0	0	0	0	224	76%
		PJ	5	2	1	281	2	0	57	1	0	8	0	0	7	0	364	77%
	ter	PR	0	0	0	8	29	1	0	2	0	1	0	0	0	0	41	71%
	Photo Interpreter	PW	0	0	2	3	0	113	3	5	0	1	0	0	0	0	127	89%
	terp	SB	24	0	9	13	0	1	410	15	0	4	0	0	0	2	478	86%
	Ē	SW	4	1	0	2	0	5	22	125	0	3	0	0	0	0	162	77%
	oto	AB	0	0	0	0	0	0	0	0	89	12	1	0	1	0	103	86%
ī	ЧЧ	BW	2	6	1	5	0	0	2	0	7	230	1	18	24	1	297	77%
		MR	2	2	0	0	0	0	0	0	4	22	22	0	5	0	57	39%
		PB	0	2	0	1	0	0	2	0	1	35	1	62	80	0	184	34%
		PT	0	0	0	3	0	0	2	1	1	22	0	13	227	0	269	84%
		SN	0	2	0	5	0	0	4	0	0	1	0	0	6	132	150	88%
	Tot	al	232	183	185	333	31	120	566	154	103	353	25	93	350	135	2863	78%
Precision (Correct/ TSI)		79%	89%	92%	84%	94%	94%	72%	81%	86%	65%	88%	67%	65%	98%			
Weighted Avg (Hit rate & Precision)		81%	88%	83%	81%	81%	91%	79%	79%	86%	71%	54%	45%	73%	93%			

The ground truth stem test is the most comprehensive stem test conducted and includes 2,863 trees. It includes all samples > 5m in height and the mix of species samples was designed to assist with model creation. As a result, the mix does not represent the species mix found in the land base. Strengths here include good separation of conifer from deciduous species (97%) and good separation of live trees from dead trees (99%).

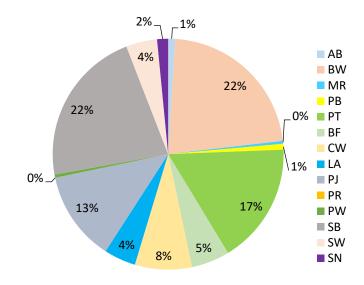
Issues include some overcalling of BW as well as overcalling of SB, although SB has a good weighted average score.

Stem Test (By Height)




As expected, overall accuracies are highest for the largest trees. The <10m accuracy is above expectations primarily due to the lack of diversity in that height group.

Forestry Futures Trust – Romeo Mallette Production Area and Validation Data


Validation areas used to create the species identification model were selected across the production area. These 162 validation areas represent a mixture of species and natural sub-regions.

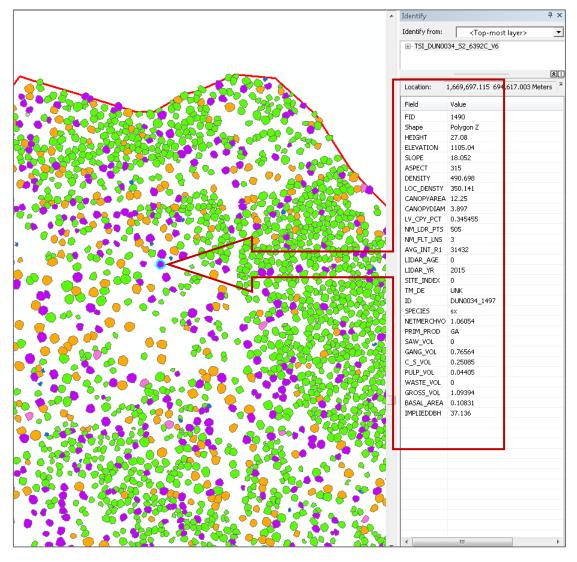
Comparison to Photo Interp

Validation Area Stereo Canopy Cover

Validation Area TSI Canopy Cover

2%_ _1% 3% AB BW 23% MR PB 23% PT 0% BF CW _1% 🗖 LA 0%_ PJ PR 13% 17% PW SB SW 5% 8% SN

Overall, TSI is finding a very similar species breakdown by canopy cover to what was stereo interpreted in the validation areas. The pie charts on the left reflect the aggregate total for 162 areas. Detailed breakdowns follow in later slides.

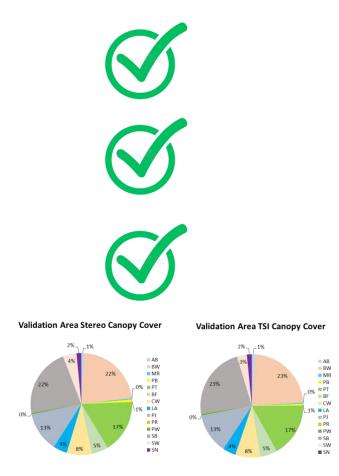

Species	AB	BW	MR	PB	PT	BF	CW	LA	PJ	PR	PW	SB	SW	SN
R Square	0.972	0.956	0.172	0.347	0.967	0.909	0.987	0.983	0.977	0.002	0.934	0.970	0.856	0.993
Standard Error	0.010	0.050	0.012	0.008	0.046	0.028	0.022	0.019	0.036	0.002	0.007	0.060	0.024	0.015
Observations	162	162	162	162	162	162	162	162	162	162	162	162	162	162

	CN	DC	DE
R Square	0.988	0.986	0.993
Standard Error	0.043	0.044	0.015
Observations	162	162	162

Individual Tree Inventory - Example

- Each tree has a unique id and associated list of attributes
- Highlighted example shows a Sw tree:
 - 27.1m Ht
 - 37.1cm DBH
 - 1.09 m3
- Can produce stand and stocking tables similar to cruise, based on almost complete census within any user defined polygon.

Tree Species Accuracy

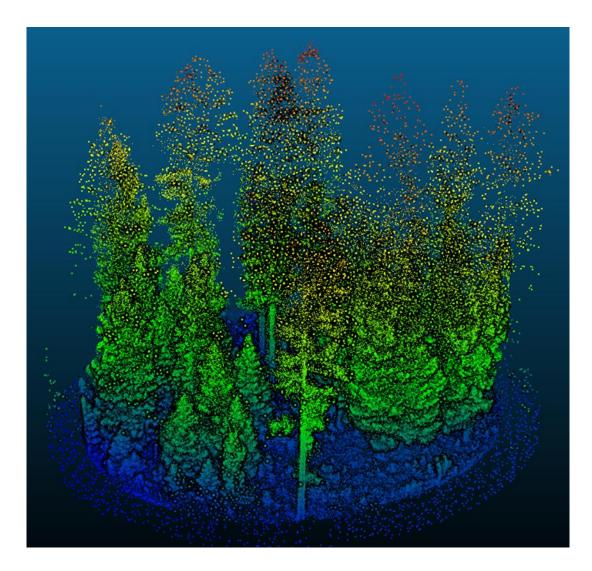

Contract Standards

 \bigcirc Tree Species 5-10m tall >=60%: Achieved 78%

 \bigcirc Tree Species >10m tall >70%: Achieved 78%

Onifer Deciduous > 90%: Achieved 97%

 Model matches land base species mix well (not over-fit to individual tree samples)

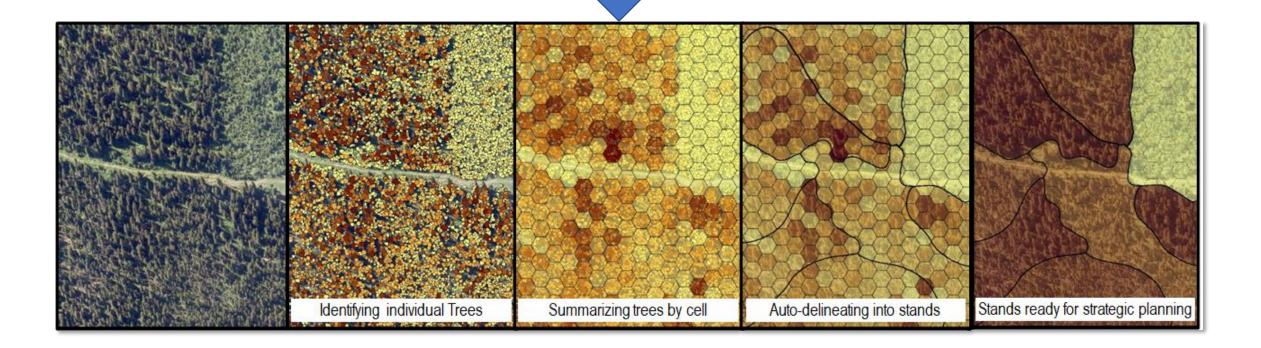


Hex Inventory

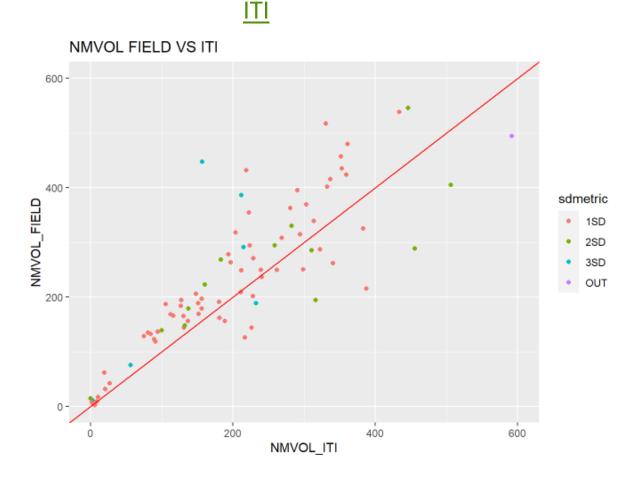
Forest Management Specialists

Lidar + ITI Results + Plot Data

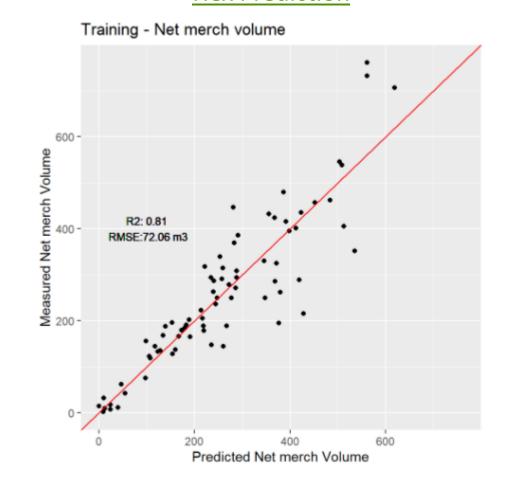
- Solution State State
- \bigcirc Collect Plot data (400m² fixed area)
- → Aggregate ITI data for Plots
- \odot Calculate ABA metrics for Plots
- Create Predictive Models (ITI + ABA)
 - Vol, SPH, BA, Tree Lists, etc
- ➢ Fill in Species and Heights from ITI



Operational to Strategic


Linked Inventories – Different Uses, Same Data

Attributes predicted using ground plot data



Hex Attributes

Net Merch Volume

Hex Prediction

Hybrid (Hex) EFI Product

Hexs with Final Attributes

Species %'s

- ➢ Max ht, Top Ht, Lorey Ht
- Basal Area
- SPH 🛇
- ➢ Avg DBH, QMD
- ⊘ Crown Cover
- ⑦ Tree list
- \bigcirc Vol/ha by species
- > Dead percentage

EXPTGRID
Shape_Len
Shape_Are
LEADING_
CROWN_C
GROSS_VC
GROSS_M
NET_MVO
DWB_FACT
SPH_GT_5r
SPH_MERC
BASAL_AR
MERCH_B/
LIVE_MERG
DEAD_ME
STAND_PE
GROSS_M
GROSS_MI

IEX_INVENTORY - FN-979	
	INSO
EXPTGRIDID	A6
Shape_Length	74.448397
Shape_Area	400.000086
LEADING_SPP	pt
CROWN_CLOSURE	97
GROSS_VOL_PRED_HA	332.78
GROSS_MVOL_PRED_HA	250.13
NET_MVOL_PRED_HA	188.94
DWB_FACTOR	0.244633
SPH_GT_5m	1746
SPH_MERCH	1436
BASAL_AREA_HA	38.88
MERCH_BASAL_AREA_HA	36.08
LIVE_MERCH_STEMS_PER_HA	1436
DEAD_MERCH_STEMS_PER_HA	0
STAND_PERCENTAGE_DEAD	0
GROSS_MERCH_VOL_LIVE	250.13
GROSS_MERCH_VOL_DEAD	0

Creating A Polygon Inventory

Project Goal

Produce homogenous polygons with FRI-like inventory attributes suitable for strategic planning purposes (timber supply analysis)

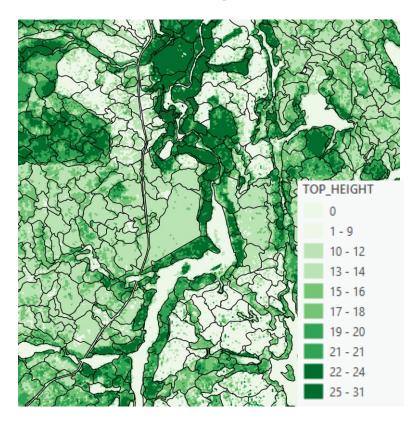
Proof of concept for how a new polygon inventory could be created from LiDAR without the need for wall-to-wall photo interpretation

Creating A Polygon Inventory

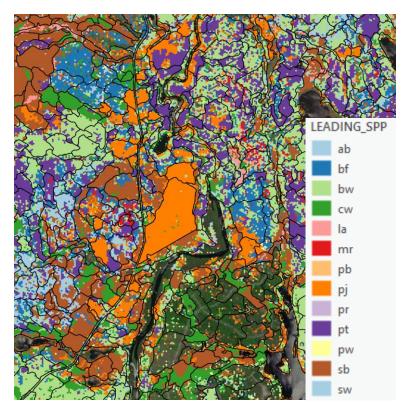
A new approach

Traditionally photo interp. polygons are delineated based on similar characteristics in:

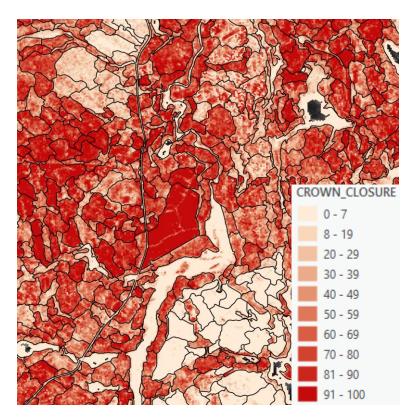
- Ecosite, tree species, landforms
- Interpreter skill / experience.


Auto delineated polygons are created using an eCognition segmentation algorithm that looks to grow regions (stands) with similar values for <u>leading species</u>, <u>stand height</u>, and <u>crown closure</u>

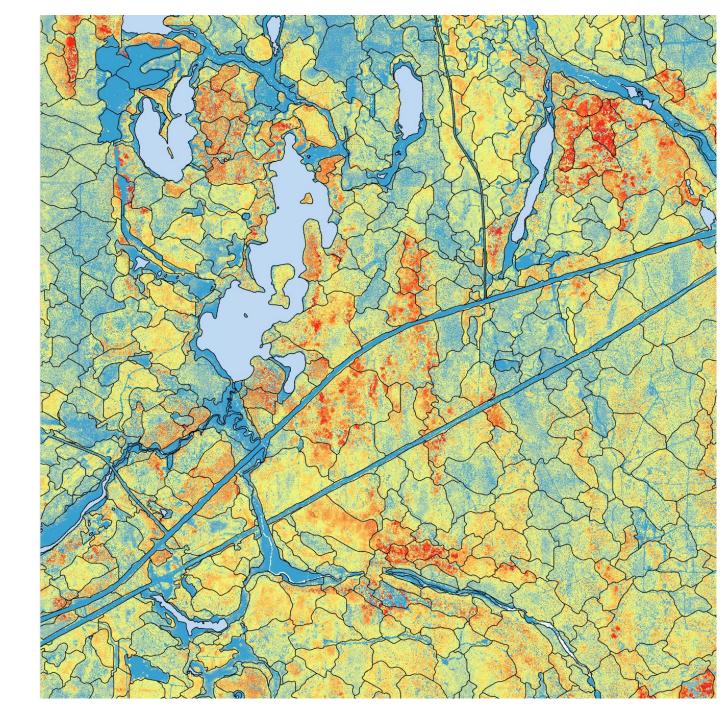
Polygon Delineation



Input Datasets and Final Polygons


Top Height

Lead Species


Crown Cover

Creating Inventory Polygons

A Fusion of Data Sources

- ➢ Non-forest from '05 FRI
- ➢ LiDAR water
- Automated polygons for remaining forest
- Silviculture Records /
 Openings / New Interp

Creating A Polygon Inventory

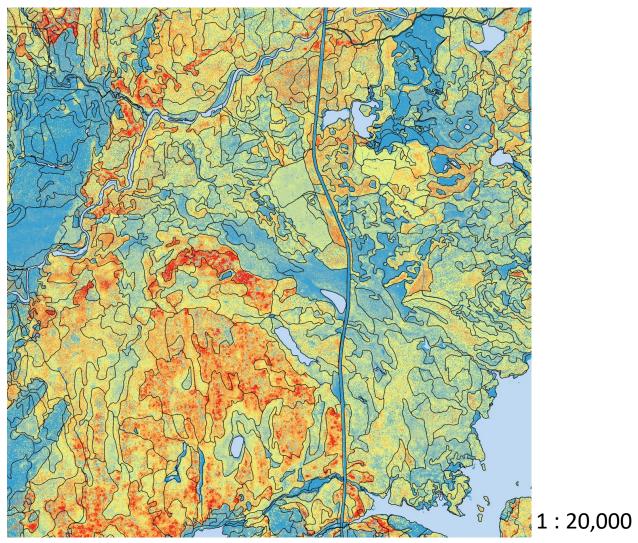
Polygon Attribution

The finalized polygons were attributed using the HEX and ITI data as follows:

Species Proportions
 Basal Area (total, merch)
 Volumes (gross, gross merch, net merch)
 Stems per Hectare:
 Heights (top, Lorey)
 Quadratic Mean Diameter (merch)
 Summary of ITI Species weighted by BA
 Area Weighted Avg of Hex Values
 Area Weighted Avg of Hex Values

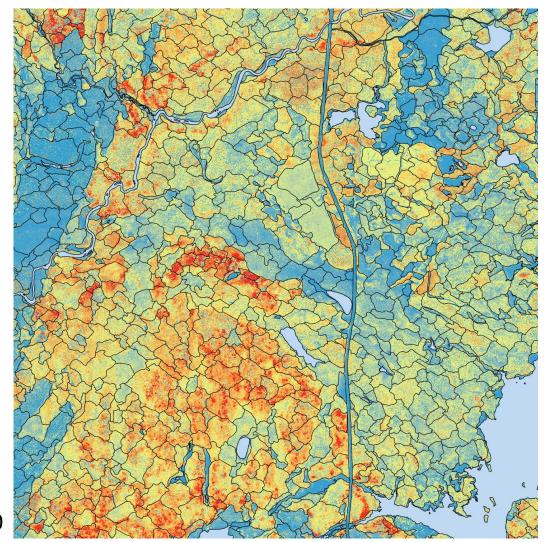
Accuracy of the 6 categories of attributes above were the main focus of this project. Attributes that were the focus of other FFT-KTTD projects were not considered including: vertical structure and site index.

Comparison of Polygon Size


'05 FRI – '18 Segmentation

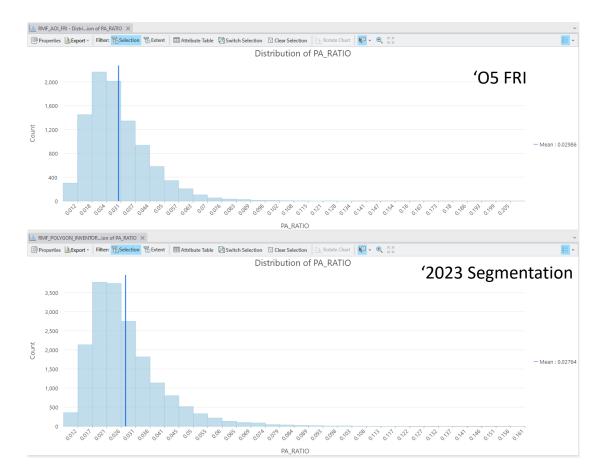
- \bigcirc Auto delineated polygons result in:
 - More, smaller polygons
 - Less variation in size

	2005 FRI	2023 Polygon Segmentation	Difference
Number of polygons (FOR)	12,095	20,757	8,662
Minimum (Ha)	0	0	(0)
Maximum (Ha)	145	40	(104)
Mean (Ha)	7	4	(3)
Median (Ha)	4	3	(1)
Standard Deviation (Ha)	10	4	(7)
Variance (Ha)	106	13	(93)


Polygon Comparison

FRI (7 Ha avg)

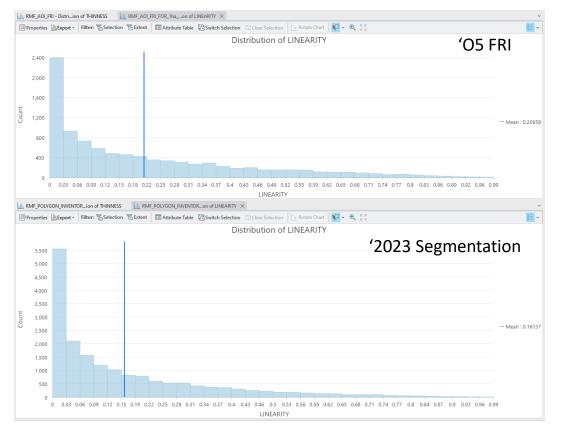
Automated (4 Ha avg)



Comparison of Polygon Shape

Perimeter / Area (Edge) Ratio

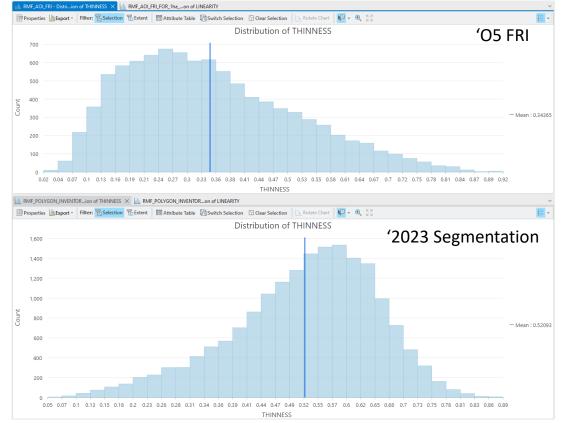
 \odot The perimeter-area ratio is an indicator of polygon shape complexity.


Perimeter / Area (Edge) Ratio Polygons > 1 ha	2005 FRI	2023 Polygon Segmentation
Number of polygons (FOR)	9,569	18,018
Minimum	0.005	0.007
Maximum	0.212	0.161
Mean	0.030	0.028
Median	0.027	0.025
Standard Deviation	0.014	0.012

Comparison of Polygon Shape

Linearity Index

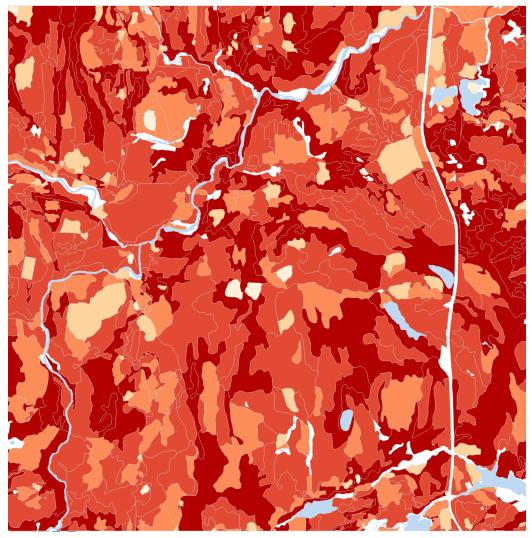
Linearity index is a measure of how well a polygon can be described by a straight line.

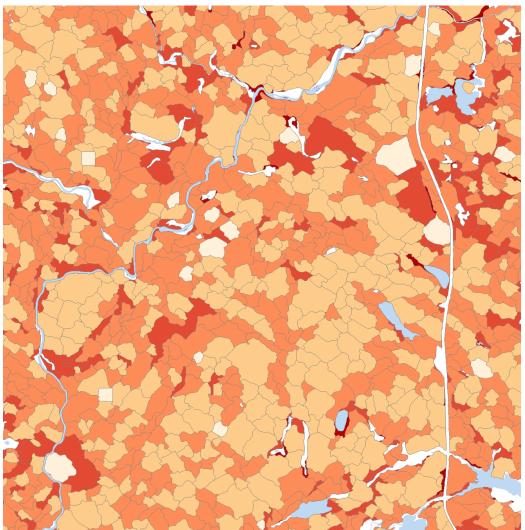

Linearity Index Polygons > 1 ha	2005 FRI	2023 Polygon Segmentation
Number of polygons (FOR)	9,569	18,018
Minimum	0.000	0.000
Maximum	0.986	0.991
Mean	0.210	0.161
Median	0.132	0.089
Standard Deviation	0.218	0.187

Comparison of Polygon Shape

Thinness Ratio

The Thinness Ratio describes the relation between a polygons perimeter to its area using geometric attributes of a circle as a basis for comparison.




Thinness Ratio Polygons > 1 ha	2005 FRI	2023 Polygon Segmentation
Number of polygons (FOR)	9,569	18,018
Minimum	0.015	0.047
Maximum	0.922	0.886
Mean	0.344	0.521
Median	0.319	0.539
Standard Deviation	0.166	0.134

Polygon Comparison

Thinness Ratio FRI (avg .344) vs Automated (avg.521)

Polygon Quality Assessment

SUMAC Photo Interpretation

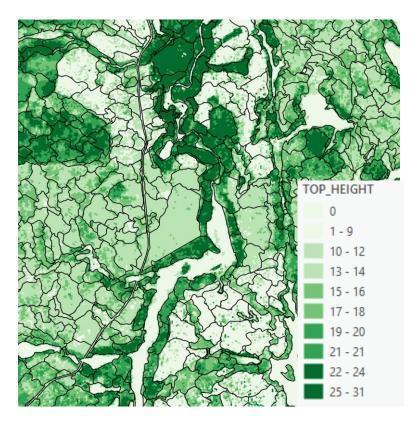
- Quality assessment of
 2,500 hectare area for:
 - LiDAR derived species composition,
 - Auto stand delineation

Photo Interpreter Detailed Review

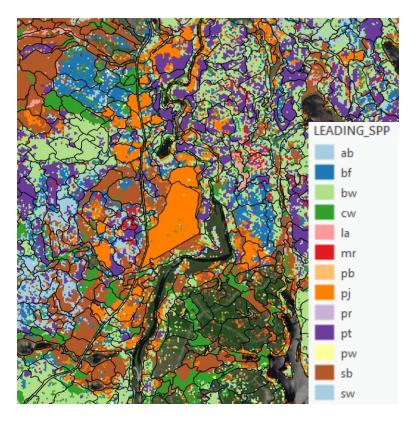
Polygon Quality Assessment

Stand Delineation

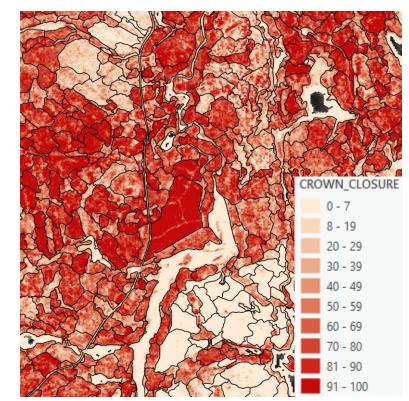
Sometimes missed hard breaks between age classes, depletions and mature forests, upland and lowland, species composition


- A function of raster stand delineation and required smoothing
- Srouped parts of different strata
- Polygons seldom encompassed the full extent of a particular strata
- > Polygons did not represent ecosites well

Polygon Delineation



Input Datasets and Final Polygons


Top Height

Lead Species

Crown Cover

Polygon Quality Assessment

Species Composition

Species accuracy as good or better than the average interpreter

- Shortcomings in delineation led to complex species compositions within mixed strata stands e.g. Sb 34Pj 26Pt 20Bw 8Bf 5Sw 4Pb 2Pw 1
- \odot Some species confusion
 - Mature Pw vs Sw vs La vs Pr presumably because similar large limby appearance of their crowns,
 - Pb vs Pt vs Bw miss ID was more prevalent in younger stand,
 - Ab vs Bw Ab often underestimated,
 - A bit of confusion between Sb vs Sw vs Bf,
 - Bf often overlooked when young,

Recent Improvements

Separate conifer and deciduous models

- O Age /site index prediction in AB
- \bigcirc Two tiered predictions in AB
- GIS polygon approach

ITI/Hex Time Frames and Budget

Advantage

- Produced in a much shorter timeframe
- Most time restrictive element is the plots
- Millions of hectares can be done in 6-10 months

Disadvantage

Small landbases don't benefit from economies of scale

ITI/Hex Products and Attributes

Advantage

- Operational to Strategic Inventory products that are linked (ITI/Hex/Poly)
- \bigcirc Less subjective attribution
- Plot driven corrections in the hexagon EFI
- Volume/BA/Stems information created

Disadvantage

Harder to capture 'intangibles' like a photo interpreter (understorey)

 Room for improvement on stand polygon delineation leveraging new data sources (digital soils mapping)

Consistency

Advantage

- More consistent data driven attribution
- Eliminates potential data entry errors
- Will allow users to compensate for any bias over time

Disadvantage

Less able to address unique or special conditions where human judgement is necessary

Polygon Homogeneity

Advantage

- Smaller polygons can be created for no additional cost
- These smaller polygons are more homogeneous
- Better growth and yield estimates due to less within polygon variability
- Population level growing stock check with volume estimates

Disadvantage

Do not always capture landforms as well as human delineated polygons

Does not look like traditional FRI polygons

Conclusions

- > Results clearly show there is big opportunity to leverage ITI
 - LiDAR derived species at an individual tree level
- The question becomes about trade-offs (data driven vs manual interp)
 - Cost similar at large scales (~ 1 million hectare), ITI/Hex cheaper if ground plots already available.
 - ITI/EFI much faster and more consistent across large areas (less subjectivity)
 - ITI/EFI have huge benefits to operational planning
 - Within-stand wall-to-wall tree attributes
 - Tree size for determining product sort estimates
 - Automated polygons can be smaller without adding cost goal is to increase homogeneity and support better yield curve predictions
 - Potential opportunity to blend both methodologies (non forest, eco types)

Project deliverables

⊘ Individual Tree Inventory

- Point geodatabase
- Polygon geodatabase
- > Hexagon Inventory geodatabase
- Polygon Inventory geodatabase
- O ArcGIS Forsite LiDAR Add-In
- > Final Report

Using the hex and iti

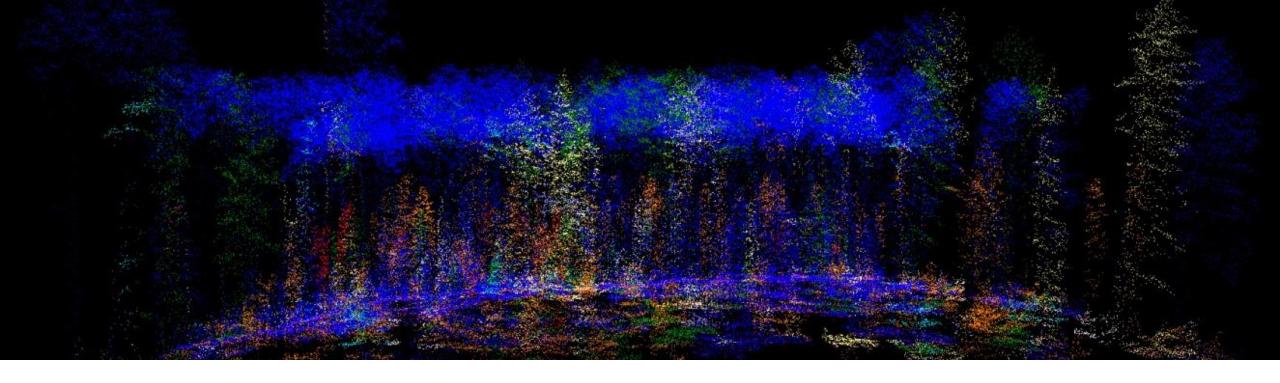
Forsite LiDAR Add-In Demo

Future Research

⊘ Improve understory identification

- Define Stand structure types across the landbase prior—single story, two story or complex. (Woods and Penner Petawawa research forest – CWFC 2023 presentation)
- O Continue improving the Age and Site Index methodology
- O Continue refining polygon delineation methodology

Thank You Project Partners



Cam Brown MF, RPF

Manager Resource Management &Technology Group

Mike Parlow

Team Lead – Remote Sensing Inventories

cbrown@forsite.ca

mparlow@forsite.ca